

Evaluation and validation of the HTRF insulin assay as a replacement for a commercially available ELISA

Jeffrey Hixon Elixir Pharmaceuticals Cambridge, MA USA

4th Annual Symposium HTRF in Drug Discovery

Avignon, France – September, 2008

Breakthrough Science of Aging & Metabolism

Elixir Pharmaceuticals is a pharmaceutical company focused on the discovery, development and commercialization of novel pharmaceuticals for the treatment of metabolic diseases and obesity.

Significant Opportunity in Metabolic Disease

Type II Diabetes

- >180M people worldwide have diabetes
- Type II accounts for 80-95% of all cases
- Frequently undiagnosed
- Sixth leading cause of death by disease
 - Leading cause of kidney disease
 - Leading cause of non-traumatic limb amputations
 - Leading cause blindness among young adults

Type II Diabetes

- Complicated metabolic disorder
- Characterized by:
 - Loss of sensitivity to insulin
 - Decrease in the body's ability to produce insulin
 - Overproduction of glucose by the liver
 - Uncontrolled diabetes leads to abnormally high blood sugar levels
 - a condition known as hyperglycemia
- Six classes of drugs approved for treatment
 - Still unmet medical need for diabetes / weight control drugs

Key to diabetes research is the ability to measure insulin effectively and accurately

Insulin

- Produced in the beta islet cells of the pancreas
- Stimulate uptake of glucose from the blood
- Critical in the control of glucose homeostasis
- Insulin deficiency is the hallmark of type I diabetes
- Hyperinsulinemia and insulin resistance characterize type II diabetes
- Diabetes research often involves rat and mouse models for in vivo studies
 - Diet induced obesity (DIO) model: animals fed high fat diet to induce an imbalance in blood glucose and insulin levels
 - Glucose tolerance test (GTT): where a bolus of glucose is administered and plasma insulin and glucose levels are measured over time

Key to diabetes research is the ability to measure insulin effectively and accurately

- Traditional assays for insulin
 - Radio-immunoassay (RIA)
 - Enzyme linked immunosorbant assay (ELISA)

Cisbio's HTRF insulin assay

Insulin ELISA

- 96 well antibody coated plate
- Dispense 95µl sample diluent
- Pipette 5µl plasma sample or insulin standard
- Incubate 2 hours at 4C
- Wash 5 times with wash buffer
- Dispense 100µl anti-insulin conjugate
- Incubate 30 min at room temperature
- Wash 5 times with wash buffer
- Dispense 100µl enzyme substrate solution
- Incubate 40 min at room temperature
- Stop reaction by adding stop solution

- Measure A₄₅₀ and subtract A₆₃₀ values
- Calculate insulin concentrations using the standard curve

Cisbio's HTRF insulin assay

- Dispense 5µl sample or insulin standard
- Dispense 2.5µl each of anti-insulin Ab-cyptate and anti-insulin Ab-XL665
- Incubate 2 hours at room temperature
- Read on an HTRF compatible reader
- Calculate insulin concentration using the standard curve

Assay comparison

	<u>ELISA</u>	<u>HTRF</u>
Sample volume required	5μl	5μl
Standard curve range	0 - 6.4ng/ml	0 - 10ng/ml
Plate format	96 well	384 well
Miniaturizable	no	yes
Total # steps to perform assay	13	5
Total time to perform assay	4+hrs	~2hrs
Wash steps	10	zero
Cost per well (US\$)	\$3.46	\$0.13
Specificity	r, m	r, m, p, h

ELIXIR PHARMACEUTICALS

Comparison of ELISA and HTRF standard curves

Miniaturization assessment

20ul

15ul 10ul

5ul 3ul

2ul

Rodent and Human insulin standard curves

Rat/mouse insulin standard curve

Human insulin standard curve

Time course in variable volume assay

Replicate standard curves

Rat / mouse insulin standard curves

Insulin	
standard	
concentration	
(ng/ml	CV (%)
0	4.4
0.15625	3.6
0.3125	4.7
0.625	4.4
1.25	4.7
2.5	2.8
5	1.7
10	1.8

Variability testing

Variability testing on unknown plasma sample

Insulin measurement in pancreatic islets

Glucose Dose Response of Insulin Secretion in Pancreatic Islets isolated from mice (n=3)

Ghrelin is a key metabolic regulator

- Peptide hormone
- Secreted from stomach
- Interacts with receptors in the brain and periphery
- Controls and integrates a variety of metabolic functions
- Part of an intricate neuroendocrine system

Ghrelin signaling as a validated target in metabolic disease

- Ghrelin KO and ghrelin receptor KO mice resist diet-induced obesity (DIO)
- KO mice resist decline in metabolic parameters when placed on a high fat diet
- Block of ghrelin inhibits body wt gain, food intake and fat mass content in rodents
- Vaccination against ghrelin causes lack of weight gain and increased relative fat free mass in rodents
- A small molecule ghrelin antagonist inhibits body weight gain and insulin levels in DIO mice

Favorable metabolic profile in ghrelin receptor KO mice

Parameter	GhrR +/+	GhrR -/-	<i>p</i> value
Body Weight (g)	46.2 <u>+</u> .8	38.9 <u>+</u> 1.3	<0.0001
Glucose (mg/dl)	118.6 <u>+</u> 4.7	98.6 <u>+</u> 4.3	<0.01
Insulin (ng/ml)	.97 <u>+</u> .10	.53 <u>+</u> .05	<0.001
HOMA-IR	7.38 <u>+</u> .92	3.34 <u>+</u> .43	<0.001
CLAMP (GIR, mg/Kg/min)	26.7 <u>+</u> 2.4	37.3 <u>+</u> 3.6	<0.05
% HbA1c	4.20 <u>+</u> .10	3.93 <u>+</u> .08	<0.05
TG (mg/dl)	101.1 <u>+</u> 3.7	103.2 <u>+</u> 5.0	n.s.
TC/HDL-C	1.22 <u>+</u> .03	1.14 <u>+</u> .02	<0.05

Improved insulin sensitivity

From: Longo et al [2008] Regul Pept. 150:55

Dramatic improvement in insulin sensitivity in both male and female DIO GhrR KO mice

Male DIO GhrR KO vs WT mice

Female DIO GhrR KO vs WT mice

ELIXIR

GhrR antagonism recapitulates the insulin sensitivity of HFD fed GhrR KO mice

Decreased plasma glucose excursion

Dramatically decreased insulin requirement

Conclusion

- The HTRF insulin assay allows:
 - Seamless migration from ELISA to HTRF format
 - Extremely cost effective assay compared to ELISA
 - ~4% of the cost
 - Comparable sample requirements
 - Time savings over the ELISA
 - >2 hours savings
 - Assay volumes scalable to screening levels
 - Easy measurement of insulin levels across multiple systems
 - In vivo: rodent and human plasma or serum samples
 - In vitro: pancreatic β cells

Acknowledgments

Elixir:

Tom McDonagh

Peter DiStefano, CSO

In vivo team:

Brad Geddes

Elizabeth Govek

Anna Nolan

Ken Longo

Yong Qi

Cisbio - US:

Diane Bowers

Chris Balagtas

Amy Card

Anna Sinsigalli

