

### Faculty of Health and Medical Sciences

# HTRF assays of IP1, cAMP and pERK pathways employed to study biased signaling of the calcium-sensing receptor

Hans Bräuner-Osborne

Molecular Pharmacology Group
Department of Drug Design and Pharmacology
www.farma.ku.dk/MolPharm
hbo@sund.ku.dk



# G protein-coupled receptor families/classes

Class A (for example, M2 mAChR)



Class B (for example, CRFI)



Class C (for example, GABA<sub>B</sub>)





### Calcium-sensing receptor (CaSR) signaling pathways



# Biased signaling



- Ideally, we would like to measure all possible pathways individually for each ligand.
- Require efficient pharmacological assays.

# Is CaSR signaling biased?



## HTRF assay of IP<sub>1</sub> generation





- 384 well format
- HEK293 cells in suspension
- Plates read on EnVision (PerkinElmer)
- cAMP assay function in similar fashion



# HTRF assay of ERK1/2 phosporylation



- HEK293 adherent cells in 96 well plates
- transfer supernatant to 384 well HTRF assay plate
- Plates read on EnVision (PerkinElmer)



# Ca<sup>2+</sup> agonist response



## Agonist signaling bias (example of 12 tested agonists)



ERK1/2 phosphorylation



Thomsen et al. Cell Calcium 2012

Ba<sup>2+</sup> is biased towards cAMP inhibition

| Ca <sup>2+</sup><br><u>mM (%)</u> | Ba <sup>2+</sup><br><u>mM (%)</u> |
|-----------------------------------|-----------------------------------|
| 2.5 (100)                         | 3.5 (42)                          |
| 1.6 (100)                         | 1.7 (84)                          |
| 2.9 (100)                         | 2.4 (40)                          |
|                                   | mM (%)<br>2.5 (100)<br>1.6 (100)  |



# Agonist signaling bias (example of 12 tested agonists)



ERK1/2 phosphorylation



Thomsen et al. Cell Calcium 2012

Spermine is biased towards cAMP inhibition and pERK activation

| Ca <sup>2+</sup><br><u>mM (%)</u> | Spermine mM (%)                  |
|-----------------------------------|----------------------------------|
| 2.5 (100)                         | 0.82 (87)                        |
| 1.6 (100)                         | 0.41 (104)                       |
| 2.9 (100)                         | 0.40 (55)                        |
|                                   | mM (%)<br>2.5 (100)<br>1.6 (100) |



# Serum [Ca<sup>2+</sup>] regulation





# Rat thyroid carcinoma 6-23 cells express CaSR and release calcitonin

6-23 cells Calcitonin release



# <u>CaSR-HEK293 cells</u> IP<sub>1</sub> generation

$$Ca^{2+}$$
  $Sr^{2+}$   $MM (\%)$   $MM (\%)$   $Sr^{2+}$   $Sr^{2+$ 



# Potency rank-order does not correlate between calcitonin release and IP<sub>1</sub> generation



 $Sr^{2+}$  is more potent than  $Ca^{2+}$  in calcitonin release but less potent in  $IP_1$  generation indicate involvement of additional pathways and biased agonism.



# Potency rank-order correlates between calcitonin release and cAMP inhibition and pERK activation



However, pathway inhitors indicate that these pathways are not responsible for the increased potency of Sr<sup>2+</sup> in mediating calcitonin release.



#### Conclusions

- HTFR assays are effective in measuring the major signaling pathways activated by G protein-coupled receptors
- CaSR agonists have different signaling profiles in cell lines with either recombinant or endogenous receptor expression.
- The active CaSR have multiple conformations with preference for different signaling pathways.
- Development of biased ligands might improve efficacy/side-effect profile for drugs.
- HTRF assays highly efficient for measurement of biased signaling.
  - pERK assay very efficient compared with traditionel Western blot techniques
  - However, like WB, it cannot discriminate which pathways that lead to the observed pERK activation

### Acknowledgements

### Department of Drug Design and Pharmacology, University of Copenhagen

Alex Rojas Bie Thomsen Maja Hvidtfelt Stine Engesgaard Jacobsen

LEO Pharma A/S
Jesper Worm
Martin Stahlhut
Markus Latta

#### **Financial support:**

Drug Research Academy, Leo Pharma A/S, Aase & Ejner Danielsens Foundation, Beckett-Foundation



# HTRF assay of cAMP generation



- 384 well format
- HEK293 cells in suspension
- Plates read on EnVision (PerkinElmer)

