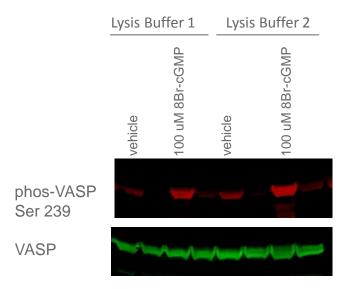
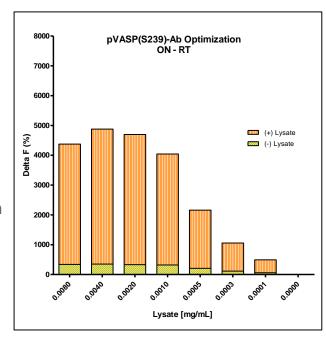


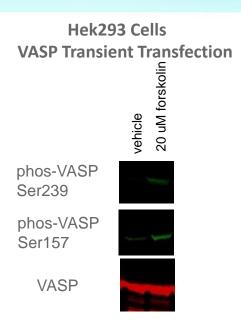
VASP


- ► VASP= vasodilator-stimulated phosphoprotein
- Regulates actin cytoskeleton dynamics and plays a role in smooth muscle contraction.
- Modulated by cAMP and cGMP pathways
- We sought to develop a phos-VASP HTRF assay for both Ser157 and Ser239 phosphorylation in order to evaluate signaling downstream of cAMP and cGMP pathways.
- Goals:
 - Develop an assay to be utilized for routine screening
 - Miniaturize
 - Minimize plate handling
 - · Robust signal
 - High Z-prime
 - Assay platform translatable to physiologically relevant cells
 - Assay platform translatable to in vivo studies
 - Potential for human clinical biomarker studies

Differentiating cGMP and cAMP Pathways

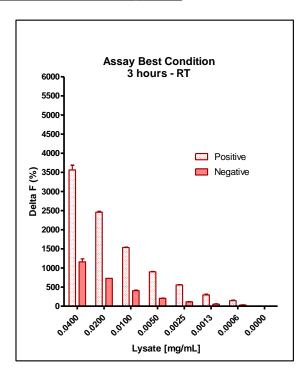

Custom Assay Development for VASP Phos-Ser239

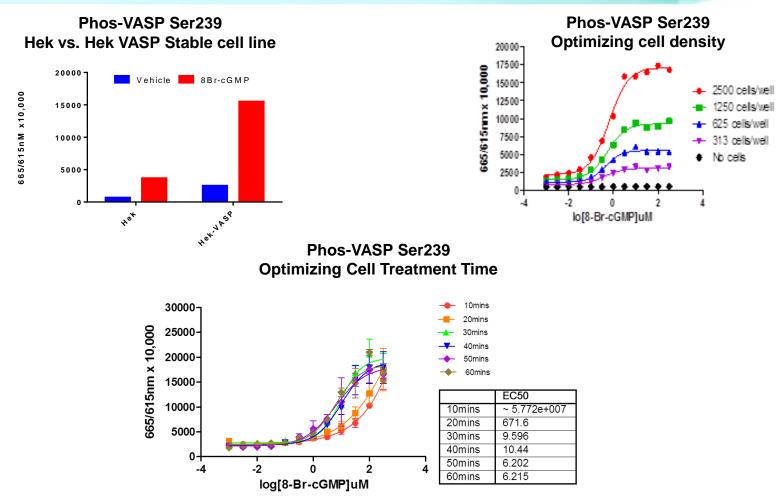
Hek293 Cells VASP Transient Transfection



- ► Tested 2 total VASP and 3 phos-VASP antibodies; each labeled with donor and acceptor using 3 concentrations of lysate samples
- Optimized concentration of each antibody using 3 concentrations each antibody in matrix fashion on 7 concentrations of lysate samples
- ► Final selection tested on titration of lysate samples (graphed)
 - Monoclonal phospho-VASP (Ser239) labeled d2
 - Monoclonal VASP labeled K
- ► Significant signal-to-noise between treated and untreated samples

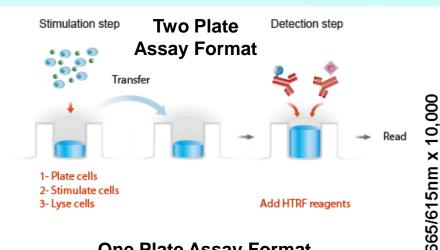
	ANTIBODIES	
ID#	Name	Clonality
1	VASP Antibody-K	Poly
2	VASP Antibody-d2	Poly
3	VASP-K	Mono
4	VASP-d2	Mono
5	Anti-pVASP (Ser239)-K	Mono
6	Anti-pVASP (Ser239)-d2	Mono
7	VASP Antibody (Ab-239)-K	Poly
8	VASP Antibody (Ab-239)-d2	Poly
9	VASP (phospho-Ser239)-K	Mono
10	VASP (phospho-Ser239)-d2	Mono


Custom Assay Development for VASP Phos-Ser157

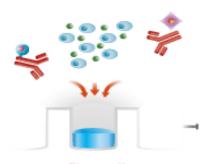

HTRF Assay Development (Cisbio)

	ANTIBODIES	
ID#	Name	Clonality
1	VASP Antibody-K	Poly
2	VASP Antibody-d2	Poly
3	VASP-K	Mono
4	VASP-d2	Mono
5	Phospho-VASP (Ser157)-K	Poly
6	Phospho-VASP (Ser157)-d2	Poly
7	Anti-VASP (phospho S157)-K	Poly
8	Anti-VASP (phospho S157)-d2	Poly
9	Anti-VASP (phospho S157)-K	Mono
10	Anti-VASP (phospho S157)-d2	Mono

- ► Tested 2 total VASP and 3 phos-VASP antibodies; each labeled with donor and acceptor using 3 concentrations of lysate samples
- Optimized concentration of each antibody using 3 concentrations each antibody in matrix fashion on 7 concentrations of lysate samples
- Final selection tested on titration of lysate samples (graphed)
 - Monoclonal phospho-VASP labeled K
 - Monoclonal VASP labeled d2
- ► Significant signal-to-noise between treated and untreated samples

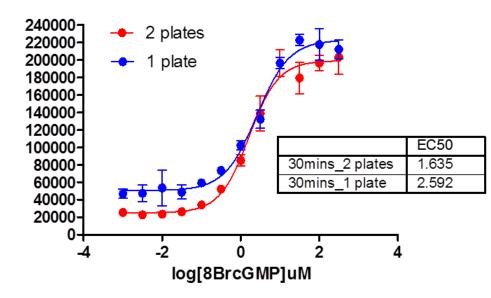


Optimizing Cell Type, Cell Density and Time Course



Preferred Method: Hek-VASP cell line, 1250 cells/well, 30 min treatment

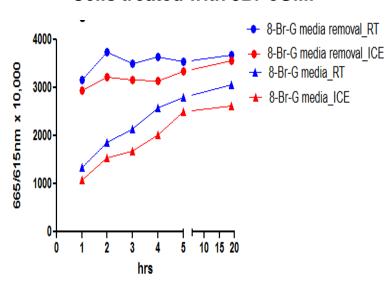
Two vs. One Plate Assay Format

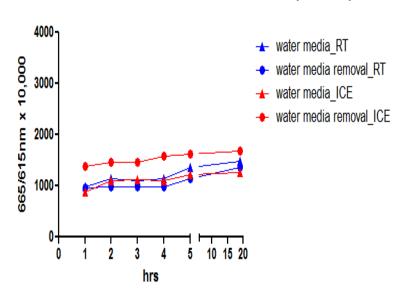


One Plate Assay Format

- 1- Plate cells
- 2- Stimulate cells
- 3- Lyse cells
- 4- Add HTRF reagents

Phos-Ser239 VASP: 2 vs. 1 Plate

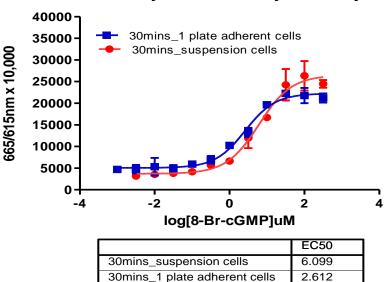

- Cells were treated with 8Br-cGMP for 30 minutes
- Media removed and cells lysed at RT and then transferred to new second plate or
- Cells lysed directly in media and assay continued in same plate


Optimizing Lysis Conditions Exploring Signal Stability Over Time

Phos-Ser239 VASP

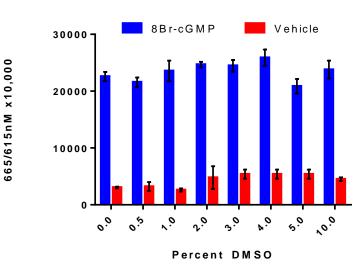
Cells treated with 8Br-cGMP

Cells treated with vehicle (water)


- Cells treated with 100 uM 8Br-cGMP
- Cells lysed by adding lysis buffer directly into the media, or the media was removed and then added to the cells
 - Later switched to treat cells in HBSs instead of media and were able to get maximum signal by 2 hours
- Cells lysed either on ice or RT for 30 minutes
- Signal read over time between 1 and 20 hours

Preferred Method: Lyse cells at RT and read plate after 2 hours

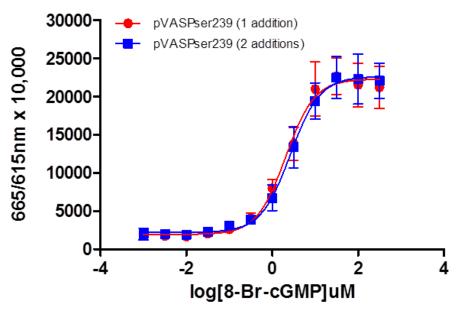
Assay Ready Frozen Cells in Suspension DMSO Tolerability


Phos-Ser239 VASP

Cultured cells: Plated day before or day of assay

- Cells were plated day before or day of assay
- Cells were treated with 8Br-cGMP for 30 minutes

Frozen cells in suspension: DMSO tolerability

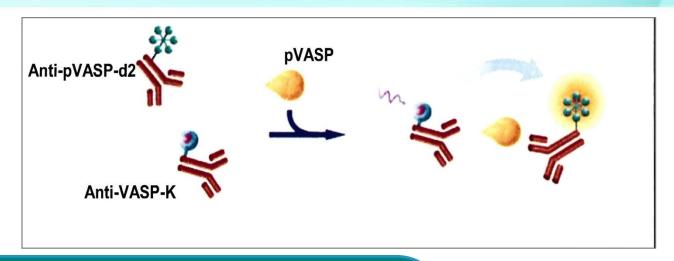


- Assay ready frozen cells in suspension plated day of assay
- Cells were treated with 100 uM 8Br-cGMP for 30 minutes

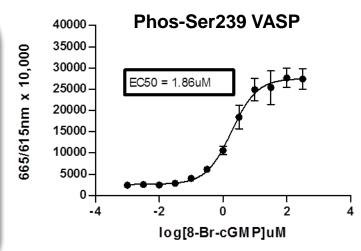
Preferred Method: Assay ready frozen cells in suspension with 1% DMSO

One vs. Two Additions for Antibody Reagents

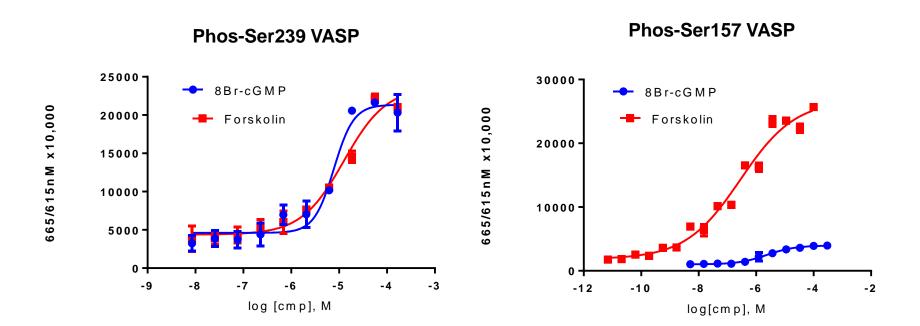
Phos-Ser239 VASP: 1 vs. 2 step Antibody Addition



	EC50
pVASPser239 (1 addition)	2.071
pVASPser239 (2 additions)	2.657


- Cells treated with 8Br-cGMP for 30 minutes;
- Antibodies added one at a time sequentially or pre-mixed and then added together

Preferred Method: Pre-mix antibodies and one step addition

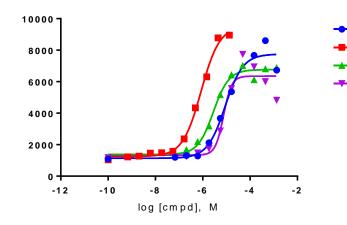

Phos-VASP Ser239 and Ser157 HTRF Assay

- Jump-In Hek293 or U2OS overexpressing VASP cell lines
- Assay ready frozen cells used in suspension day of assay
- 384 well low volume proxiplate
- 1250 cells per well in 6 ul HBSS
- Compound treatment in 1 % DMSO
- Lyse cells (2 ul) directly into HBSS at room temperature for 30 minutes
- Mix antibodies and add to plate (2 ul)
- Read two hours later, up to 20+ hours later
- ~0.7 Z-prime

Recombinant Cell Line for Screening: Hek293 Cells Overexpressing VASP

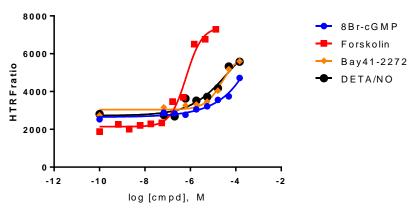
cAMP pathway leads to Ser239 and Ser157 VASP phosphorylation cGMP pathway leads to Ser239 VASP phosphorylation

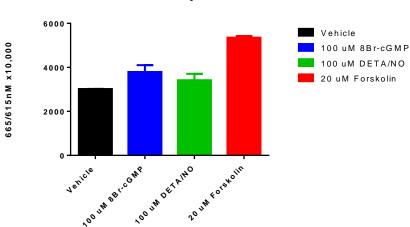
Physiological Relevant Cells: Rat Aortic Smooth Muscle Cells


8Br-cGMP

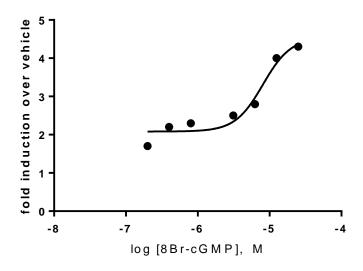
orskolin

DETA/NO

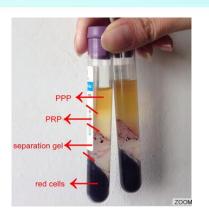

Bav41-2272


665/615nM x10,000

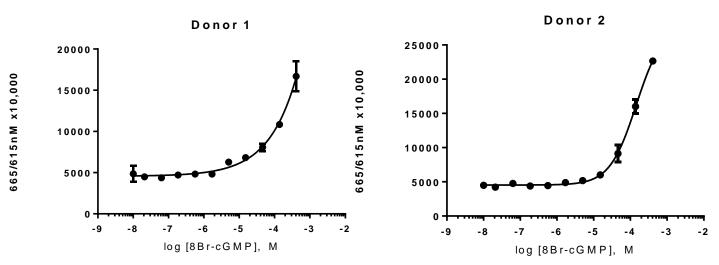
Rat AoSMC-VASP phos-Ser157


- cAMP pathway leads to Ser239 and Ser157 VASP phosphorylation and ~2-fold induction phos-CREB
- cGMP pathway leads to Ser239
 VASP phosphorylation

Rat AoSMC- phos-CREB


Mouse Whole Blood Ex Vivo Assay

Phos-Ser239 VASP: Ex Vivo Treatment


VASP HTRF can be used as target engagement assay to help establish in vitro in vivo correlations

Human Platelet Ex Vivo Assay

- Human donor blood collected in citrate tubes
- Blood centrifuged to separate RBCs and plasma
- Plasma centrifuged in a second step
- Remove plasma and retain platelet pellet
- Platelets treated with Prostagladin E1
- Platelets counted and plated in 384-well plate
- Platelets treated ex-vivo
- HTRF assay performed

Phos-Ser239 VASP: Ex Vivo Treatment

VASP HTRF can be used on human platelet samples for potential biomarker

Potential to look at PBMC and whole blood

Conclusion

- ▶ We developed VASP HTRF assays to measure phos-Ser239 and phos-Ser157 in cells.
 - 384 well format, 10 ul final volume, robust signal
- Assay can be used to differentiate compounds affecting cGMP and cAMP pathways
- Advantages of HTRF for Target Engagement
 - Assay can be run in high throughput in a streamlined fashion with few liquid additions, no liquid exchanges and with minimal steps
 - Robust assay in recombinant cells for routine screening
 - Assay translates to physiologically relevant cells (ex. Rat AoSMCs)
 - Assay can be performed on ex vivo and in vivo animal model samples and utilized to help establish in vitro in vivo correlations
 - Assay has potential as biomarker assay for human clinical samples