

IgG core a-fucosylation and its impact on FcγRIIIa binding

uality Teamwork **Unity** Bench to bedside and back again **Pa**

MipTec 21.09.2011

Sandra Grau

Roche Glycart AG

TagLite Results

Outlook

Introduction Antibody therapies

- Monoclonal antibodies represent a growing class of therapeutics with more than 20 molecules licenced for the treatment of cancer and chronic diseases.
- Major indications: oncology, infectious diseases and autoimmunity.
- ➤ Efficacy results from their specificity to the antigen target as well as the activation of effector functions.
- In oncology one relevant mechanism of action is antibody-mediated cellular cytotoxicity (ADCC):
 - This was shown for various antibody therapeutics such as rituximab (anti-CD20) and trastuzumab (anti-Her2).
 - The mechanism underlying ADCC is the binding of FcγRIIIa on natural killer cells (NK cells) to the Fc portion of an IgG and killing of the target cell

Introduction *Glycoengineering*

Main goal for next generation therapeutic antibodies was: Increase the binding of the antibody to activating $Fc\gamma Rs$ ($Fc\gamma RIIIa$).

- Two different strategies:
 - Amino acid mutations in the Fc part of the antibody
 - Changing the carbohydrate moieties in the Fc portion of the antibody
 - \rightarrow a-fucosylated antibodies show increased binding to Fc γ RIIIa and enhanced ADCC in

Introduction *Glycoengineering*

Glycosylation of lgGs

Removal of fucose \rightarrow increased affinity for FcγRIIIa

How can one generate antibodies lacking the fucose?

Introduction *Glycoengineering*

→ Engineering cell lines overexpressing GnTIII

N-linked glycosylation

Why has the presence of the fucose such a great impact on binding?

- □ N-acetylglucosamine (GlcNAc)
- ▲ Fucose

Mannose

Crystal structure of Fc\(\gamma\)RIIIa complexed with either a-fucosylated or fucosylated Fc

Carbohydrate-carbohydrate mediated interactions are responsible for an up to 100-fold gain in binding affinity for a-fucosylated vs. fucosylated IgGs.

Crystal structure of Fc\(\gamma\)RIIIa complexed with either a-fucosylated or fucosylated Fc

- ➤ The Fc-core fucose (highlighted in yellow) has to accommodate in the interface and the Asn162-receptor glycan has to move (←>).
- The result is a direct, steric inhibition caused by core fucose for the carbohydrate-mediated interaction with FcγRIIIa.
- The structures provide a molecular mechanism explaining the increased affinity for the receptor of a-fucosylated antibodies.

Roche

Characterization of monoclonal IgGs

Carbohydrate analysis

Biological actitivity

Affinities

Surface Plasmon Resonance

Could the TagLite technology combine some of these analysis?

TagLite Results

Outlook

TagLite – results FcγRIIIaV158 and F158 competition assay

Assay setup:

- ■10.000 cells per well (expressing huFcγRIIIaV158 or F158 labeled with Tb)
- ■IgGs with various a-fucosylation degrees (4, 8, 11, 57 and 80 %) conc. 4000 to 1.8 nM final in well (1:3 dilutions).
- Labeled IgGs (human IgG-d2); conc. 50 nM final in well
- Incubation time: 0h, 1h, 3h, 5h @ RT

TagLite – results FcyRIIIa(V158)

- The assay works nicely with the high affinity receptor.
- Already after one hour incubation ranking of the abs can be detected.
- The 2 IgGs with high a-fuc degree compete much better than the 3 IgGs with lower a-fuc degree.

TagLite – results FcγRIIIa(F158)

- The assay also works with the low affinity receptor but the assay window is much smaller.
- Still also here the higher a-fucosylated IgGs compete better than the ones with lower a-fuc content.

TagLite – results Comparison FcγRIIIa(V158) and FcγRIIIa(F158)

TagLite – results Correlation with other methods

a-fuc increase	huFcγRIIIaF158	MALDI	Biacore	TagLite	
		a-fuc (%)	KD (nM)	EC50 (nM)	20
	832	4	1300	881	- /EC5
	834	8	940	728	KD/E
	835	11	845	170	e ii
	836	57	68	32	lo V
	842	80	39	27	<u>₩</u> <u>E</u>

	huFcγRIIIaV158	MALDI	Biacore	TagLite	_
4)		a-fuc (%)	KD (nM)	EC50 (nM)	
a-fuc increase	832	4	200	555	
	834	8	201	370	
	835	11	111	226	
	836	57	17	28	
Ġ	V 842	80	7	13	Y

improve in KD/EC50

Note: KD values (Biacore) depend a lot on the format used. In the present format KD values for a-fuc abs tend to be lower than with other formats. You can expect values ranging from 500-700 nM for FcgRIIIaV158 and lowa-fuc abs.

TagLite – results

Roche

Correlation with other methods

Biological activity - BLT assay

- The BLT assay measures the release of esterase upon activation of NK cells
- ➤ The graph shows that the 2 IgGs containing higher a-fuc degree lead to a 3 fold higher release of esterase than the ones with lower a-fuc degree.
- The release correlates well with killing of the target cell.

TagLite Results

Outlook

Conclusion/Outlook

- The TagLite technology provides a nice, robust and easy to use tool to study binding of antibody Fc portions to FcγRIIIa on cells.
- The data correlate well with data from Biacore and cell based assays like ADCC
- An advantage compared to Biacore analysis is that binding occurs with native receptor embedded in the cell membrane rather than purified soluble forms which translates better into cell based assays.
- Interesting would be to test also other hu Fc γ receptors as well as muFc γ R which might be of importance fo mouse models.
- Also to be checked: Could you determine a-fucosylation degree simply by using a standard curve of IgGs with various a-fucosylation degree and therefore use the TagLite assay for screening purposes?

Acknowledgements

Roche Glycart

Cisbio Bioassay

Pablo Umana

Delphine Jaga

Christiane Jaeger

Hamed Mokrane

Claudia Ferrara

Sylvia Herter

We Innovate Healthcare